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Abstract

The basic feature of liquid molecules is non-random migration. The cells made up of the molecules are not the prison cages
restraining themselves but are the carriers on which they are migrating. Based on this idea, new expressions for configurational
partition function as well as the excess Gibbs energy of liquids and their mixtures have been derived from statistical
thermodynamics. This has resulted in the establishment of a new thermodynamic model of liquid mixtures. The model has
been verified to be quite convenient and reliable in predicting the thermodynamic properties of liquid alloys. © 2000 Elsevier

Science B.V. All rights reserved.

Keywords: Thermodynamics; New model; Liquid mixtures; Liquid alloys

1. Introduction

A great deal of binary data have been compiled in
monographs such as Ref. [1], but multicomponent data
is scattered over some journals and quite scarce
because the determination of thermodynamic data
of a multicomponent system needs not only the con-
summate skill of a researcher and excellent instru-
ments but also the continuous financial support.
Furthermore, there have just been numerous multi-
component systems in industrial processes. It was
obviously unrealistic to measure all the data experi-
mentally. Therefore, a unique economic and effective
method to predict multicomponent systems from the-
ories or from thermodynamic models which depend
on less experimental data is required.

The thermodynamic models suggested so far cannot
make accurate prediction for multicomponent liquid
alloys over a wide range of concentration [2], e.g. the

“Tel.: +86-0871-5116730.

Pelton-Flengas’s or P-F model [3] requires fitting many
model parameters which have unclear physical meaning
and thus its predicting ability is very limited; a linear
chemical-physical theory model [4] gives a good fit
to binary liquid alloys, but it is difficult to extend it to
ternary systems; Fan—Zhou’s model [5] is only suitable
for a dilute metals solution; Wilson’s model [6] cannot
be used for liquid-liquid partial miscible systems and
their model parameters lack physical understanding.
The purpose of this work, therefore, is to derive new
expressions of configurational partition function of
liquids and their mixtures based on the basic feature
of liquid molecular movements and to establish a
new thermodynamic model of liquid mixtures.

2. The new expressions of configurational
partition function of liquids and their mixtures

The new expression of configurational partition
function was obtained from the physical sense
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of liquid molecular movements in that liquid
molecules are not like gas molecules which are in
continuous irregular motion and not like solid
ones which are vibrating continuously at one site
but are migrating non-randomly from one cell to
another. In fact, the magnitude of the self-diffusion
coefficient D of liquid molecules is usually
107> cm?s™', and the distance the molecules move
per second is about 10> cm which is an estimate
of /Dt. This distance is about 10> times the size of
a molecular cell 10 ® cm. It can be seen that the
hypothesis that liquid molecules are almost in cells
all the time contradicts the basic feature of them
moving at least in a time interval of seconds. This
shows that the molecular cells are not the prison
cages which restrain them but are the carriers in
which they are migrating. According to statistical
thermodynamics, therefore, the partition function of
the pure matter i is

Qpi
NAAN

Qi = 6]
where A?N", N; and Q,,; are the partition function of
molecular kinetic energy, the molecular number and
the configurational partition function of the pure
matter i, respectively. The last term can usually be
expressed as

Eyi
Qp,-:/‘../exp — ) dx, dy; dz;- - - dxy, dyy, dzy,
v, kT

2)
where V; is the volume, and E,,; the potential energy.
This may be chosen as

Eyi = 3 ZNi&ii (3)

where Z; is the nearest molecule or first coordination
number and ¢; is the i—i pair-potential energy. Sub-
stituting Eq. (3) into Eq. (2) and considering the basic
feature of the liquid molecular motion as mentioned
above, Eq. (2) can be simplified to

N;

///exp( 2kT)dxdydz
Vi ZN{I”
() oo 5) ®

Similarly, the partition function and the configura-

Qpi

tional partition function of the pure matter j are,
respectively,

Oy
0= (5)
! Ni!A;Nj
AN ZNjg;
o= (i) eo(-%5 ©

where the symbols have the same meaning as those of
the pure matter i. The partition function and the
configurational partition function of a binary liquid
mixture i—j are, respectively,

O
— 7
NAAPNAZY @
[ foul
x (dx; dy; dz; - de, dyw, dzv )
X (d)C] dyl dZ1 s de/ dyN/ dZN,)
N;
= ///exp —— dx dy; dz;
N;

/ / /exp(—;:—;) dx; dy; dz;

///exp —— dxdydz
Vv Ne,
() en(-32) ®

where V and N are the volume and molecular
number of the mixture, respectively, and ¢, is the
mixing potential energy function of the molecules i
and j.

3. A new expression of excess Gibbs energy of
liquid mixtures

According to the relation between Gibbs energy and
partition function

B OlnQ
o= sr[r(222) g 0
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one can get the Gibbs energy of a binary mixture i—j:

\%
G = kT[N —Nln< ) +k—TP+1 (VAN NA )}
(10)
as well as the Gibbs energies of the pure matters i and
J, respectively:

Vi Z;Nig;; :
G, =kT |:N, — N;In (—) + —8 + ]l’l(N,'/l?N'):l

N; 2kT

(11)
Vi\ . %N 3N,

(12)

Thus the new expression of the excess Gibbs energy of
mixture i—j is

G = AGM — AG™ = (G- G°) — (G + G; — G°)

V; V;
=G—G;—G;=kT|N;In[~ ) + NjIn
N; N;
% 2Ne, — Z;iN;ei; — Z;Njej;

V; Vi
= RT |:l’li In (xiv> + n; In (_xj—(/>

2nsp — Z,-n,-s,; — Zjl’lijj
2kT
Vi Vinj
= nRT [xi ln(V:) +x;1In (V—:J>
n 28p — Z,‘)C[S,‘,' — Zj)Cijj
2kT

B ' g P; Ag,
(%) om(®) + 25 0o

where AGM, AG'™ and G° are the real Gibbs energy
of mixing, the ideal Gibbs energy of mixing and the
standard Gibbs energy of mixing i—j, n;, n; and n are
the number of moles of i and j and the mixture i—j, x;
and x; the molar fractions of i and j, and Vy,;, Vi and
Vin the molar volumes of i and j and the mixture i—j,
respectively; @; = x;Vim;/Vm and @; = xjVp;/ Vi, are
the molar volume fractions of components i and j in
the mixture i—j, respectively; and the excess potential
energy function of the mixture i—j is

ASP = 28p — Z,‘)C[S,',’ — Zj)Cijj (14)

If Ag, = 0, then Eq. (13) may be reduced to

GF —nRT[x,ln((p> +len<¢>] (15)
]

which is the well-known Flory—Huggins equation [2].

Suppose that in the liquid mixture i—j, there are two
types of molecular cells in which the central molecules
i and j reside, respectively. Then the local coordination
numbers of the cell i are Z; and Z;; that are defined as
the numbers of molecules i and j surrounding the
central molecule i. The local coordination numbers
of the cell j are Z; and Z; that are defined as the
numbers of molecules j and i surrounding the central
molecule j. They are also proportional to their corre-
sponding Boltzmann’s factors, i.e.

Zij = x; exp(— ]i—;) Zji = x; exp( k;) (16)
g &

Based on the above considerations, the local mole-
cular fractions of the molecules i and j surrounding a
central molecule i can be defined, respectively, as

Zii Xi
Xij = = )
Zi+Zi; xi+xBj
7z x:B::
Xji ==L (18)
Zi+Zi; xi+x;Bj

and the local molecular fractions of the molecules j
and i surrounding a central molecule j can be, respec-
tively, defined as

L%
Y Zi+Zy x By
Zij .X,'B,'j
v _ 19
' Zi+Zy x5+ xiBy 1

where the pair-potential energy interaction parameters
Bj; and Bj; are defined, respectively, as
bij — 8/7)
kT

&ji — &ii
i)
(20)

Obviously, Eqs. (18) and (19) satisfy the normaliza-
tion conditions

Bj; = exp (— B = exp(—

xi,-—i—xj,-: 1, ij-i-x,'j: 1 (21)

Therefore, the local volume fractions of the molecules
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i and j in the mixture i—j can be expressed as
Xii Vimi XV,

¢ = = m (22)
XiiVimi + %jiVimj  XiVii + X;ViiB;i
ij ij _ )Cj ij

G = (23)

xijmj + xiij,- o )Cijj + )C,'Vm,'Bij

According to the two-liquid theory [2], the mixing
potential energy function &, of the molecules i and j
can be chosen as

&p = 5 [Zixi(xais + xigii) + Zg (e + xgey)] (24)

Substituting Eq. (24) into (13) in which @; and &; are
replaced by {; and {;, one can achieve a new model of
the molar excess Gibbs energy GE of the liquid
mixture i—j:

El Vini
_— = xi ln _—_—
RT XiVimi + X;VimiBji

V .
T xln <—m)
Xijj +xiVmiBij
XiXj Z,'Bj,' In Bj,‘ Z]B,] In Bij
2 Xi +)Cij,‘ Xj +X,‘Bij

(25)

as well as new expressions of activity coefficients of
the components i and j, respectively:

vmi
In Vi = In ()
x,‘le’ + ijijji

( VmjBiji VmiBijj )
+ x; -
.X,'Vmi =+ )Cijiji Xijj =+ .X,'Vm,'B,'j
ZBiInBj  ZB;InB; 26)
2 (X,‘ + ijji)z (Xj + xiBij)z
Vi
In7; =1In <x~V TV, ~B~~)
Vi T Xi VmiDij
o ( VayBji _ VmiBjj )
XiVmi +xVimiBji XV + XiVmiBj
ZjBi h’l Bij ZiBji In Bji (27)
2 (g +xBy)® (i +xB;)°

Extending Eq. (25) to a multicomponent mixture, its
molar excess Gibbs energy can be generalized as

n
E X; ln
/ liVmJBJl

1& > j—1%Bji In Bji)
— = Z,’X,’ ],,7 (28)
2 Z < > i1 XkBii

i=1

and the expression of activity coefficient of any com-
ponent i is

Vi "~ X VmiBik
Z xJVmJBJl - 12;:1xjvmj3jk
Z;3 -1 %Bji In B ZjxiBij

> 1xlBlt = 21 %By

1
2
Zl lxlBIJ

Iny; =1+1n

4. Prediction on the thermodynamic properties of
liquid alloys with the new model

It is necessary to determine the coordination num-
bers of liquid metals before applying the new model to
liquid alloys. For the liquid metal i, the coordination
can be defined as [7]

Z; = 2/ 4nr?p,gi(r, T)dr (30)
Toi

where p; = N;/V; and g;(r, T) are the molecular num-
ber density and the radial distribution function, r(; and
rmi; the beginning and first peak values of radial
distance near its melting point, respectively. Since
the coordination decreases exponentially with tem-
perature, g;(r, T) may be represented as

OCAHm,'
RT

gi(r,T) = gi(r) eXp< (€29)
where o = 2/Z is a constant and Z, = 12 is the close-
packed coordination, and AH,,,; the melting enthalpy.
Suppose that first peak of the radial distribution func-
tion g,(r) at T K approaches a normal distribution, and
then when r = ry,;, it should be

Fmi
B —_—— 32
(ot — ro )V 2r G2

Thus substituting Egs. (31) and (32) into Eq. (30) and
integrating it, one can obtain the equation of coordi-
nation number of a liquid metal

24/2 — ZAHm,‘
Zi = T ( mi ro’)p,-rm,- exp( ) (33)
I'm

3 — To; ZRT

8i(mi)

The activities of the components of the ternary
liquid alloys Cd-Bi-Pb(773 K) [8] and Cd-Bi-
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Table 1
The related parameters of the components

i roi (1078 cm) i (1078 cm) AH,,; (kJ/mol) Vi (cm>/mol)

Cd 2.54 3.00 6.109 14.00[1 + 1.50 x 1074(T — 594)]

Pb 2.76 3.26 5.104 19.42[1 + 1.24 x 10~4(T — 600)]

Bi 2.78 3.34 10.878 20.80[1 + 1.17 x 10’4(T — 544)]

Sn 2.68 3.14 7.196 17.00[1 + 0.87 x 10~4(T — 505)]
iqui _Bi— 2 Vi VB; 1

Sn(773 K) [9] and the quaternary liquid alloys Cd-Bi B— I~ Inr* — It~ 2% 7B 1B,

Pb—-Sn(773 K) [10] were chosen to check Eq. (29) 2+ 7 J V; V; 2

since the data are well known to be reliable. In order to
determine the required binary parameters Bj; and By,
the thermodynamic properties of the Cd-Bi, Cd-Pb,
Cd—Sn, Bi—Pb, Bi—Sn [1] and Pb—Sn [11] liquid alloys
and the related parameters [7] of their components
must have been found out for the model as shown in
Table 1.

When x; or x; approaches zero, the infinite dilution
activity coefficients 77 and 77 are derived from
Egs. (26) and (27), respectively:

ViniBji VimiBjj
Iny®=1-1In[ %) -2
Vmi Vm'

1
-3 (ZiIn Bj; + Z;B;; In B;;) (34)
VmiBjj VimiBji
Iy =1 —1n(—m If) -
my mz
1

The parameter Bj; is solved by connecting Egs. (34)
and (35):

By =¢” (36)

Table 2

(37

Let a function and its derivative be, respectively,

Zi Vi ZB v
f(Bji) = (1 + 3> InBj; + (Vj + ’7> e’ +1In (Vj>

+1Iny™ —1 (38)

f'(Bji) = %—F (%4—%4—3)8’ ef (39)

B/:_zizj<% Zil;Bji+%> 40)
According to the Newton formulae,

[1Bijit)] @)

Bty = Bt =g ]

The initial values of Bj; and B;; can be obtained from
the data of 77 and 7 through computing repeatedly
(n+ 1) times until |Bjiy) — Bjins1)| < 10-%. By sub-
stituting the values into Egs. (26) and (27), the final
values of Bj and Bj; are determined by making
the average fitting deviation S;,; = +{> ], .,
[i.ori(exp) — @iorean]”/n}'"/* less than (£0.007-0.02)

The values of Bj;, By, S and S of the binary liquid alloys i—j at 773 K

i—j T (K) Bj; Bj; +S; +S; +S7 +5; (&i — i) [k (K) (&5 — &) /k (K)
Cd-Bi 773 0.471 1.634 0.0086 0.0060 0.01 0.01 581.57 —379.54
Bi-Pb 700 1.152 1.071 0.0043 0.0030 0.007 0.007 —99.05 —48.01

773 1.137 1.064
Cd-Pb 773 0.900 0.720 0.0032 0.0028 0.01 0.01 81.27 253.72
Bi-Sn 600 1.153 0.789 0.0076 0.0075 0.02 0.02 —85.57 142.15

773 1.117 0.832
Cd-Sn 773 0.893 0.956 0.0048 0.0047 0.01 0.01 87.87 34.85
Pb-Sn 773 0.895 0.878" - - - - 85.98 100.67

*The Bj; and B;; determined by y3 = 2.30 and rpy = 2.33 [11].
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of the experimental data as far as possible by adjusting
Bj; and Bj;. On the other hand, when the values of Bj;
and Bj; are known, the values of B;; and B;; at the
required temperatures can be obtained from Eq. (20)
in which the pair-potential energy interaction para-
meters (¢; — ¢;)/k and (¢;; — ¢;;) /k may be assumed to
be independent of temperature, as shown in Table 2. It
can be seen from the table that the values deviate less
than the experimental ones, which shows that the
fitting effects of the model for binary liquid alloys
are excellent.

Allowing the Cd-Bi-Pb, Cd-Bi—Sn, Bi—Sn—Cd and
Sn—-Bi—Cd liquid alloys to be the 1-2-3 system and the
Cd-Bi-Pb-Sn liquid alloys the 1-2-3—4 system, the
activity coefficients of component 1 of the 1-2-3

D.P. Tao/Thermochimica Acta 363 (2000) 105-113

Substituting the corresponding Bj;; and B;; into
Egs. (42) and (43), the activities of components
of those multicomponent liquid alloys have been
predicted, as shown in Tables 3-5. It can be seen
from the tables that the predicted values are in
good agreement with the experimental data and all
the predicted deviations S; are less than the experi-
mental ones S*. This shows that Eq. (29) is a con-
venient and reliable means of predicting the
thermodynamic properties of a multicomponent solu-
tion that requires only the binary parameters and
provides an important economic advantage since the
amount of experimental and computing work required
to represent multicomponent behavior is thereby very
much reduced.

Table 5 also lists the predicted results of the P-F and
Wilson models. It can be seen that P-F appears to be

and the 1-2-3-4 systems can be written from
Eq. (29) as
V, V,
lnylzl—i—ln( ml )_ X1 Vmi1
X1 Vi1 +x2VimaBa1 + x3Vi3B3g X1 Vi1 +x2VimaBa1 + x3Vi3 B3y
X Vm1Bi2 X3VmiB13 1

VB2 + Ve + 3VazBy, X1V Bis + x2VaBas + X3V 2

Zyx2B12[(x2 + x3B3) In B1y — x3B3, In B3y

(x1 +x2Bo1 + 363331)2

o (Z] (x2Ba1 + x3B31)(x2B21 In By + x3B31 In B3

(x1B13 + x2By3 + x3)2
le

n Z3x3B13[(x2B23 + x3) In B13 — x2B3 111323])

(x1B12 4 X2 + x3B3,)°
(42)

X1 Vi1

Iny, =1 +1n<

X Vimi1Bi2

X1 Vm1 + X2 VB + x3Vin3B31 + x4 VinuBay

)=

Vi1 +x%2VimaBa1 + x3Vin3B31 + x4 VinaBa
X3Vm1B13

1 VB2 + X2Van + X3Vaz By + x4VimaBaz X1 Ve Bis + X2ViBas + X3V + X4 VinaBas

_ X4Vin1B1a
X1 Vimi1Bia + x2VinaBog + x3Vin3B3sg + x4 Vina

1

2

o [Z1(x2Bai + x3B31 + x4Bay) (x2By1 In By + x3B3 In B3y + x4By) In By )
(x1 + x2By1 + x3B3) + x4By;)”
n ZzXZBIZ[()Cz + XSB32 + X4B42) In B]2 — X3B32 In B32 — X4B42 In B42}

(x1B12 + x2 + x3B3n + X4B42)2

N Z3x3B13[(x2B23 + X3 + x4B43) In B13 — X2B3 In By3 — x4B43 In By3]

(x1B13 + x2B23 + x3 +X4B43)2

n Zyx4B14[(x2B24 + x3B34 + x4) In B1s — x2B24 In Bosy — x3B34 In Bay]
(x1B1a + x2Bo4 + x3B34 + X4)2

(43)
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Table 3

Comparison of the predicted values with the experimental data of activity of component Cd in the Cd—Bi—Pb and the Cd—-Bi—Sn liquid alloys at
773 K

Cd-Bi-Pb Cd-Bi-Sn

Xcd XBi Xpb Acg.exp [8] acd,pre Xcd XBi Xsn Acd.exp [9] acd,pre
0.109 0.299 0.591 0.217 0.211 0.871 0.097 0.032 0.880 0.870
0.199 0.269 0.531 0.357 0.350 0.692 0.231 0.077 0.701 0.688
0.314 0.231 0.455 0.490 0.490 0.429 0.429 0.143 0.414 0.417
0.420 0.195 0.385 0.594 0.591 0.200 0.600 0.200 0.193 0.190
0.563 0.147 0.290 0.703 0.697 0.077 0.692 0.231 0.076 0.073
0.655 0.116 0.229 0.760 0.755 0.905 0.048 0.048 0.910 0.906
0.691 0.104 0.205 0.789 0.777 0.702 0.149 0.149 0.723 0.711
0.812 0.063 0.125 0.858 0.851 0.481 0.259 0.259 0.500 0.498
0.877 0.041 0.081 0.903 0.896 0.250 0.375 0.375 0.269 0.265
0.938 0.021 0.041 0.947 0.943 0.053 0.474 0.474 0.059 0.056
0.118 0.588 0.294 0.166 0.158 0.871 0.032 0.097 0.881 0.876
0.233 0.511 0.256 0.303 0.296 0.692 0.077 0.231 0.727 0.716
0.429 0.381 0.190 0.509 0.500 0.429 0.143 0.428 0.486 0.478
0.552 0.299 0.149 0.619 0.613 0.200 0.200 0.600 0.251 0.245
0.629 0.247 0.124 0.687 0.679 0.077 0.231 0.692 0.101 0.099
0.822 0.119 0.059 0.857 0.840 - - - - -
0.950 0.033 0.017 0.956 0.952 - - - - -

Sca = +0.0065, Sgq = +0.01

Sca = +0.0057, Sgq = £0.01

the best, while Eq. (29) is better than Wilson from the
predicted deviations, but actually Eq. (29) is the best,
Wilson not quite so and P-F the worst because P-F
model requires the experimental activities of compo-
nent Cd of the three binaries Cd—Bi, Cd—Pb and Cd—Sn
and the three ternaries Cd—Bi—Pb, Cd-Bi—Sn and Cd-
Pb—Sn as well as the 35 measured values of activity
of component Cd of the quaternary to fit the 18

Table 4

multicomponent parameters which had no physical
meanings [10]; and Wilson’s model was not suitable
for liquid-liquid partial miscible systems and its
binary parameters lacked a clear physical meaning
although it had been successfully applied to the pre-
diction of thermodynamic properties of liquid alloys
[12-16], molten salts [17], molten slags [18] and
molten mattes [19], whereas Eq. (29) not only could

Comparison of the predicted values with the experimental data of activity of components Bi and Sn in the Bi-Sn—Cd and Sn—Bi—Cd liquid

alloys at 773 K

Bi-Sn-Cd Sn-Bi-Cd

XBi Xsn Xcd aBi,exp [9] aBi,pre XSn XBi Xcd aSn,exp [9] aSn,pre
0.692 0.231 0.077 0.692 0.699 0.200 0.600 0.200 0.240 0.237
0.429 0.429 0.143 0.424 0.429 0.429 0.429 0.143 0.479 0.472
0.200 0.600 0.200 0.197 0.194 0.692 0.231 0.077 0.721 0.714
0.600 0.200 0.200 0.591 0.596 0.143 0.429 0.429 0.192 0.189
0.333 0.333 0.333 0.310 0.310 0.333 0.333 0.333 0.408 0.398
0.143 0.429 0.429 0.124 0.123 0.600 0.200 0.200 0.649 0.643
0.429 0.143 0.429 0.403 0.404 0.077 0.231 0.692 0.122 0.116
0.200 0.200 0.600 0.167 0.171 0.200 0.200 0.600 0.281 0.274
0.077 0.231 0.692 0.060 0.062 0.429 0.143 0.429 0.507 0.506

Spi = +0.0028, S, = +0.01

Ssn = £0.0050, S5, = +0.01
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Table 5

Comparison of the predicted values with the experimental data of activity of component Cd in the liquid alloys Cd-Bi—Pb-Sn at 773 K

Xcd XBi Xpb Xsn dcd
Wilson [12] Eq. (29) P-F [10] Exp. [10]

0.1000 0.1800 0.1800 0.5400 0.1414 0.1424 0.1413 0.1465
0.1998 0.1601 0.1600 0.4801 0.2703 0.2673 0.2665 0.2724
0.4000 0.1200 0.1200 0.3600 0.4860 0.4770 0.4822 0.4838
0.4999 0.1001 0.0999 0.3001 0.5768 0.5673 0.5758 0.5771
0.6000 0.0801 0.0801 0.2398 0.6611 0.6524 0.6625 0.6648
0.7000 0.0600 0.0600 0.1800 0.7417 0.7349 0.7443 0.7448
0.8000 0.0400 0.0399 0.1201 0.8222 0.8181 0.8244 0.8243
0.9001 0.0200 0.0199 0.0600 0.9067 0.9053 0.9075 0.8964
0.1001 0.1801 0.5399 0.1800 0.1933 0.1843 0.1844 0.1859
0.2002 0.1600 0.4798 0.1599 0.3432 0.3333 0.3300 0.3304
0.3001 0.1400 0.4199 0.1399 0.4615 0.4533 0.4504 0.4525
0.3999 0.1200 0.3600 0.1201 0.5577 0.5509 0.5523 0.5513
0.4999 0.1001 0.2999 0.1001 0.6388 0.6326 0.6395 0.6374
0.6002 0.0800 0.2398 0.0800 0.7105 0.7040 0.7150 0.7111
0.7000 0.0600 0.1800 0.0600 0.7767 0.7702 0.7816 0.7802
0.8001 0.0400 0.1199 0.0400 0.8424 0.8371 0.8453 0.8387
0.8999 0.0200 0.0600 0.0200 0.9133 0.9109 0.9139 0.9010
0.1007 0.2998 0.2997 0.2998 0.1480 0.1450 0.1468 0.1425
0.2002 0.2667 0.2665 0.2666 0.2789 0.2729 0.2731 0.2748
0.3002 0.2332 0.2333 0.2333 0.3943 0.3866 0.3877 0.3881
0.4000 0.2000 0.2001 0.1999 0.4956 0.4874 0.4922 0.4950
0.4999 0.1668 0.1667 0.1666 0.5863 0.5782 0.5875 0.5919
0.6001 0.1332 0.1331 0.1336 0.6697 0.6623 0.6747 0.6662
0.6997 0.1001 0.1001 0.1001 0.7485 0.7423 0.7545 0.7641
0.8000 0.0668 0.0666 0.0666 0.8269 0.8226 0.8312 0.8310
0.9001 0.0332 0.0333 0.0334 0.9086 0.9068 0.9099 0.9041
0.1001 0.5400 0.1800 0.1798 0.1179 0.1185 0.1243 0.1187
0.2001 0.4798 0.1600 0.1602 0.2334 0.2320 0.2352 0.2350
0.3000 0.4200 0.1400 0.1400 0.3433 0.3398 0.3413 0.3403
0.4001 0.3599 0.1200 0.1200 0.4472 0.4423 0.4457 0.4466
0.4999 0.3000 0.1001 0.1001 0.5450 0.5395 0.5473 0.5464
0.5999 0.2401 0.0801 0.0800 0.6381 0.6327 0.6446 0.6442
0.6999 0.1800 0.0600 0.0601 0.7279 0.7231 0.7363 0.7501
0.8500 0.0900 0.0300 0.0300 0.8604 0.8579 0.8650 0.8887
0.9193 0.0485 0.0161 0.0161 0.9229 0.9219 0.9247 0.9277

Scq = £0.0084, £0.0071, £0.0065, £0.01

characterize a multicomponent solution with only the
binary parameters where physical senses were clear
but also was put on the bases of statistical thermo-
dynamics and could be used to predict the liquid—
liquid immiscible systems.

5. Conclusions

The basic feature of the new models is of moving
the liquid molecules by non-random migration. The

molecular cells are not prison cages restraining them
but are the carriers of migration. The new expressions
of the configurational partition function as well as the
excess Gibbs energy of liquids and their mixtures have
been derived from statistical thermodynamics.

The local molecular fractions and the pair-potential
interaction parameters defined according to the
concepts of local coordination numbers have clear
physical meanings. The new model has been verified
to be quite convenient and reliable by predicting the
thermodynamic properties of liquid alloys.
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